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DETECTION OF SKIN TUMORS ON CHICKEN CARCASSES

USING HYPERSPECTRAL FLUORESCENCE IMAGING

I. Kim,  M. S. Kim,  Y. R. Chen,  S. G. Kong

ABSTRACT. This article presents a method for detecting skin tumors on chicken carcasses using hyperspectral fluorescence
imaging data, which provide fluorescence information in both spectral and spatial dimensions. Since these two kinds of infor-
mation are complementary to each other, it is necessary to exploit them in a synergistic manner. Chicken carcasses are ex-
amined first using spectral information, and the results are used to determine candidate regions for skin tumors. Next, a spatial
classifier selects the real tumor spots from the candidate regions. It was shown that the method detected chicken carcasses
with tumors, but failed to detect some tumors that were smaller than 3 mm in diameter. This study uncovered meaningful spec-
tral bands for detecting tumors using hyperspectral imaging data. A detection system based on this method can improve the
detection rate, and processing time can also be reduced, because the detection procedure is simplified by using a limited num-
ber of features, which reduces computational complexity. The resultant detection rate, false positive rate, and missing rate
of the proposed method are 76%, 28%, and 24%, respectively.
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he Food Safety and Inspection Service (FSIS) has
a mandate to inspect each poultry carcass slaugh-
tered and processed at poultry slaughter plants in
the U.S. The USDA employs thousands of human

inspectors to organoleptically inspect individual chicken car-
casses on the processing lines. Each individual inspector typ-
ically examines 30 to 35 birds per minute (bpm) for shifts of
up to 8 hours per day. Processing lines commonly run at
91 bpm, with some processing lines running at 140 bpm. A
91−bpm line presents every third bird to one inspector, thus
requiring a total of three inspectors working in this manner
to inspect all the birds. Inspectors working 8 hours per day in
this noisy and highly humid environment have a tendency to
develop repetitive motion injuries and fatigue problems
(OSHA, 1999).

Thus, there is an urgent need to develop automated
inspection systems that can operate on−line in real−time in
the slaughter plant environment, at line speeds of at least
140 bpm. Researchers at the USDA Instrumentation and
Sensing Laboratory (ISL) in Beltsville, Maryland, have been
actively involved in developing on−line abnormality detec-
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tion systems. Machine vision, multispectral imaging, and
optical spectral systems for poultry inspection are among the
approaches reported to differentiate wholesome from un-
wholesome chicken carcasses (Chen, 1993; Chen et al., 1998;
Chao et al., 2002).

Hyperspectral imaging techniques have been utilized in
many scientific disciplines, from microscopic studies to
airborne remote−sensing applications (Martinsen et al.,
1999; Shaw and Manolakis, 2002). A hyperspectral image is
a three−dimensional (3−D) volume of data containing
two−dimensional (2−D) spatial information measured at a
sequence of individual wavelengths across a sufficiently
broad spectral range. The resultant spectra can be used, in
principle, to characterize and identify any given material.
Recently, the ISL has developed a laboratory−based hyper-
spectral imaging system (Kim et al., 2001). It employs a
pushbroom method in which a line of spatial information
with a full spectral range per spatial pixel is captured
sequentially along the other spatial dimension to construct a
volume of hyperspectral imaging data.

A chicken skin tumor is a round, ulcerous lesion
surrounded by a rim of thickened skin and dermis (Calnek et
al., 1991). Tumors appear as small, scattered, localized shape
deformations,  with only slight discoloration. Conventional
vision systems (i.e., reflectance) operating in the visible
region are often too limited in sensitivity for adequate
detection of skin tumors. Studies have shown that the
presence of defects is more easily detected by using two or
more spectral band images (Park et al., 1996; Wen and Tao,
1998). Detection of chicken skin tumors using multispectral
reflectance imaging has also been reported by Chao et al.
(2002), where each grid is classified based on statistical
properties such as the coefficient of variation, skewness, and
kurtosis of the surface reflectance in the grid.

Fluorescence is a phenomenon in which light absorption
at a given wavelength by a fluorophore is followed by the
emission of light at longer wavelengths. A number of
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compounds emit fluorescence in the visible region of the
spectrum when excited with ultraviolet (UV) radiation
(Chappelle et al., 1991). Fluorescence emission characteris-
tics of food commodities can be changed by various factors.
Exogenous contaminants, such as fecal contamination, as
well as intrinsic changes in food products due to anomalies
may lead to changes in the emission characteristics (Kim et
al., 2001). However, the use of fluorescence measurements
to date has not been fully explored for safety and quality
inspection of chicken carcasses.

This article presents a novel method for detecting skin
tumors on chicken carcasses. It utilizes both spectral and
spatial information in hyperspectral fluorescence images. In
order to increase the automated detection speed, a few simple
features in both the spectral and spatial domains are selected
for use as inputs for the decision−making procedure.

HYPERSPECTRAL IMAGING SYSTEM
The ISL hyperspectral imaging system used for the

experiment is shown in figure 1. The key components of the
system are a CCD camera, a spectrograph, a sample transport
mechanism, and lighting sources. The CCD camera consists
of a thermo−electrically cooled (three−stage Peltier device)
electron multiplying charge−coupled device (EMCCD) with
288 (V) × 560 (H) pixels (Andor, Inc., South Windsor,
Conn.). The spectrograph (ImSpector−V9, Spectral Imaging
Ltd., Oulu, Finland) is based on prism−grating−prism (PGP)
optics. Although the system is equipped with two indepen-
dent illumination sources for reflectance and fluorescence
imaging, only fluorescence hyperspectral images were used
in this investigation. Two fluorescent lamp assemblies
(model XX−15A, Spectronics Corp., Westbury, N.Y.) pro-
vide near−uniform UV−A (365 nm) excitation. Short−pass
filters (UG1, Schott Glass Technologies, Duryea, Pa.) placed
in front of the lamp housing prevent transmittance of
radiation greater than approximately 400 nm, thus eliminat-

ing the potential detection of scattered excitation light as
fluorescence.

For this investigation, 65 spectral−band images were used.
Each image is a narrow band image whose center wavelength
ranges from 425.4 to 710.7 nm at a uniform interval.
Therefore, the center wavelength of the kth band image can
be obtained from:

 �k = 425.4 + (k − 1) × (710.7 − 425.4) / 64 nm (1)

The spectral calibration was performed using spectral line
lights (e.g., Hg and Ar). For a detailed description of the
hyperspectral spectral imaging system and spectral calibra-
tion, see articles by Mehl et al. (2002) and Kim et al. (2001),
respectively. A standard fluorescence target was measured
prior to each experiment to ensure comparable fluorescence
responses throughout this investigation. Line−by−line scans
were achieved by moving the sample materials across the
field of view via a precision positioning table.

HYPERSPECTRAL FLUORESCENCE IMAGES
Hyperspectral imaging yields a 3−D array or “cube” of

data, stacking single−band images (each of size M ×
N pixels) along a spectral axis. Each data value represents the
intensity of a pixel and can be denoted by I(u, v, �), where u =
1, 2, ..., M, v = 1, 2, ..., N, and � has a discrete value from �1
(425.4 nm) to �65 (710.7 nm).

For a fixed �k, I(u, v, �k) represents the kth spectral band
image, i.e., spatial information. If u and v are fixed, then
I(u, v, �) represents the spectrum at that pixel, i.e., spectral
information.  Images from two adjacent bands (�j and �j+1) are
very similar because the spectral response of a pixel shows
that there is rarely an abrupt change between two adjacent
frequencies (wavelengths). On the other hand, images from
distant bands can be much less similar and may have
independent information. No single band image has suffi-
cient information to describe the scene completely, which
explains why hyperspectral images can be useful in the analy-
sis of a scene.

ÓÓÓÓÓÓÓÓÓÓÓÓÓÓ

EMCCD

Precision Motorized Positioning Table

ISL−400

16 Bit
Digitization

VIS/NIR
Light Source

CCD
Controller
Interface

Power Supply

Sensor
Module

Optics
Module

Lighting
 Module

Rectilinear
 Fiberoptic Assembly

Short Pass Filter
(< 400 nm)

Fluorescent Lamp
(UV−A, 365 nm)

Reflector

C−Mount Lens

Fiberoptic Bundle

Prism/Grating/Prism
Assembly

Long Pass Filter
(> 400 nm)

Figure 1. Schematic diagram of the ISL hyperspectral imaging system.
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The 3−D array or “cube” of data, stacking single−band
images along the spectral axis, is the output of the sensor (the
hyperspectral imaging system). Features are measures used
for the classification. In the more general case, n features
(fj,j = 1, 2, ..., n) are used, and they form the feature vector
f = (f1, f2 , ..., fn)T, where T denotes transpose. There are many
features in the hyperspectral image, and the dominant one is
the intensity of a pixel from the various viewpoints. Feature
selection is very important because a larger than necessary
number of feature candidates exists in practice. In addition,
some features are better than others in describing a certain
object or phenomenon. Therefore, selecting optimal features
is crucial for successful classification.

Most machine vision systems deal with a limited spectral
range, but a single spectral band image may not contain
adequate information for locating tumors. In comparison,
hyperspectral imaging uniquely provides not only a range of
spectral band images but also a spectrum for each pixel in an
image. The spectral information at a pixel can work as a
complement to the images. The proposed method in this
article uses two kinds of classifiers, i.e., one spectral and one
spatial, to take advantage of the complementary nature of
these two different sources of information.

PREPROCESSING

The function of preprocessing is to obtain an ROI (region
of interest) that contains only the chicken carcass image at
each spectral band. In other words, the ROI excludes the
background from the image. Removing the background can
pose a problem in a single image due to difficulty in
differentiating darker areas of chicken skin from the
background. However, background removal becomes easy
when several band images are available. Two steps are
required. The first step is to obtain a threshold for each
spectral image. The threshold is set at the intensity of the first
minimal point (Iq) of the histogram from each image,
assuming that the background is dark (a black, nonfluores-
cent background material was used in this study) and has a
sizable area. The resultant binary image is given by equations
Mq(u,v) = 1 if I(u, v, �q) > Iq and Mq(u, v) = 0 otherwise,
where Mq(u, v) is the spatial image at �q. Then, applying a
voting method to Mq using the following equations results in
mask M(u,v):
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where Q is the number of spectral bands. Now, new images,
IR(u, v, �j), which exclude the background are obtained by
IR(u, v, �j) = I(u, v, �j) × M(u,v).

SPECTRAL CLASSIFICATION

A classifier must be trained before it can perform
classification.  For training, selection of pixels from tumor
areas and normal tissue areas was carefully carried out by
visual inspection of hyperspectral and digital color images
(ground truth) as displayed on a computer monitor.

Features were selected by evaluating spectral characteris-
tics of the spectra shown in figure 4. By examining all the

chicken spectra, with and without tumors, it was found that
the most effective features that could differentiate tumor
from normal skin are the intensity differences. For example,
in figure 4, the intensity at band 20 can be a useful feature.
The two classes, normal skin and tumor, have different
intensity ranges, although some samples in each class
overlap. Furthermore, based on wavelength−dependent
fluorescence responses between the normal skins and tumors,
a ratio of two bands can further amplify the differences
between the two classes. Three distinctive (not optimal)
features chosen based on the spectral responses were:

� f1: maximum intensity (I) in bands [20, 25] (i.e., band
20 to band 25, inclusive) divided by 10,000.

� f2: difference of intensities at band 10 and band 20 di-
vided by 10,000.

� f3: ratio of maximum I in bands [40, 45] to maximum
I in bands [20, 25].

where the corresponding wavelength to band k can be
calculated by equation 1. Each feature represents a value that
can be dependent on the experimental condition. However,
since the features have different values according to whether
they belong to the normal skin class or tumor class, the values
extracted from normal skin and tumor are clustered with
different center points in the feature space, as shown in figure
5. Therefore, it can be concluded that the decision boundary
of each feature is also dependent on the experimental
condition and can be determined during the training phase
and applied in the classification phase.

A fuzzy C−mean algorithm (Chi et al., 1996) is utilized to
find the cluster centers and decision boundary. Using the
training data, two clusters representing tumors and normal
skins are constructed. The decision boundary is determined
by a surface on which the membership grades for tumors
(�tumor) and normal skins (�normal) are the same. The points
on this surface are approximately equidistant from both
cluster centers. The spectral classifier uses the decision
boundary to classify a pixel into either the tumor or normal
skin category.

SPATIAL CLASSIFICATION

The output of the spectral classifier is a spectral map (Ism)
that shows the locations of potential tumors. A potential
tumor is a region that consists of pixels identified as a tumor
in spectral classification. The spectral classifier always
yields more tumor spots (false positive) than actually exist
because some normal areas are, spectrally, very similar to
tumors. However, the opposite trend (false negative) in
classification was not observed in this experiment. A spatial
classifier that functions as a filter to pass tumors and block
normal skins, based on the shape of potential tumors, can be
used.

Shape has been the most dominant feature in conventional
machine vision problems. The spectral classifier produces a
spectral map (Ism) that shows the suspected area, and a spatial
classifier pinpoints the tumors using the fact that most tumors
have a round shape. It should be emphasized that the features
are not obtained from any single image in the hyperspectral
images, but from the spectral map, i.e., the result of the
spectral classifier. The features extracted from the spectral
map are area, major axis length, and minor axis length. These
numbers are also found during the training phase.
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PROCEDURE SUMMARY
Fusing spectral and spatial information leads to better

accuracy because many single−method false positives can be
rejected. In addition, the practical advantage of the fusion
comes from the fact that it can simplify the procedures that
are required in both spectral and spatial processing. Thus,
fusion results in enhanced detection rate and reduced
operation time as well.

The procedure for detecting tumors using both spectral
and spatial information can be summarized as follows:

1. Read the captured images and construct hyperspectral
images I(u, v, �).

2. Remove background. Set M(u, v) = 1 for the region of
interest and M(u, v) = 0 for the background.

3. Use spectrum I(u, v, �) as an input to a spectral classifi-
er. The decision rule of the classifier is explained in the
spectral classification. The output, called a spectral
map (Ism), is the resultant image of the classifier. Each
pixel satisfies the criteria of the spectral classifier.

4. Use the spectral map (Ism) as an input to a spatial classi-
fier that is detailed in the spatial classification. The cri-
teria of the classifier are structural properties such as
size, filling ratio, and ratio of major to minor axes.

5. The output of the spatial classifier shows the locations
of tumors detected.

TESTING THE METHODOLOGY
SAMPLES

A total of 13 chicken carcasses with skin tumors were
collected from a poultry processing plant (Allen Family
Foods, Inc., Cordova, Md.) in March and May 2002. The
conditions of the chicken carcasses were identified by the

FSIS veterinarian at the plant. Tumors on the birds included
early and advanced tumor stages, ranging from very small
(less than 3 mm in diameter) to large (more than 10 mm in
diameter) in size. Samples were put in plastic bags to
minimize dehydration and then placed in a cooler with ice.
The carcasses were transported to ISL within two hours, and
imaging measurements were conducted on the same day.
Individual tumor spots on the samples were marked with
labels, and digital color images of whole birds were acquired.

RESULTS

Twelve of 65 spectral band images of the same carcass,
each image 400 × 460 pixels in size, are shown in figure 2.
Unlike the usual gray−level image from a typical CCD
camera, the intensity level at each pixel reflects the
fluorescence characteristics at a specific wavelength. The
background is removed in this stage of preprocessing. A
typical mask M for the ROI, obtained as described in the
preprocessing section, is shown in figure 3.

A total of 113 pixels (65 normal skin and 48 tumor) from
13 chicken carcasses were chosen for training. The spectra
are shown in figure 4. The feature vector has three
components (f1, f2, and f3). Then, f1 = maximum intensity in
bands [20, 25] / 10,000, f2 = slope in bands [10, 20] / 10,000,
and f3 = maximum intensity in bands [40, 45] / maximum
intensity in bands [20, 25]. The relationship between feature
f1 and feature f3 is shown in figure 5. Two clusters can be seen
fairly well separated but lacking perfect separation. To
classify every pixel in the ROI, each pixel goes through the
spectral classifier that is based on a fuzzy C−mean algorithm
(Chi et al., 1996). The algorithm results in the center of each
cluster in 3−D feature space at the coordinates (0.59, 0.44,
0.80) and (0.89, 0.19, 0.33) for normal skin and tumor,
respectively. The decision rules are as follows:

Figure 2. Hyperspectral fluorescence images with various �k  values (k = 5, 10, 15, ..., 60) from left to right, top to bottom, where �5n = 420.9 + 5n × 4.46
(nm).
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Figure 3. Mask showing the region of interest.

normal.ispixel theOtherwise,

 tumor.aispixel  then the
 tumor,and tumor, tumor,If 321 ∈∈∈ fff

 (3)

where  tumor∈f  indicates that the fuzzy membership grade
of f being tumor is greater than that of normal.

For validation, a total of 110 pixels were selected and the
decision rules were applied. This yielded:

P(tumor|normal) = 6/70
P(normal|normal) = 64/70

P(normal|tumor) = 2/40
P(tumor|tumor) = 38/40

where
P(tumor|normal) is the conditional probability of tumor

given normal skin, i.e., the probability of declaring
tumor given that tumor is not present, a false positive,

P(normal|normal) is the probability of declaring normal
skin given that tumor is not present,

P(normal|tumor) is the probability of declaring normal
skin at an actual tumor spot, and

P(tumor|tumor) is the probability of declaring tumor given
that tumor is present.

These conditional probabilities indicate that there is no
perfect decision boundary satisfying even the training set.
Therefore, it is no surprise that misclassification can
frequently happen when test data are applied to the spectral
classifier. The spectral map (Ism), shown in figure 6, is both
the output of the spectral classifier and the input of the spatial
classifier. One reason for misclassification is that the selected
spectral features are incomplete to describe all pixels. It was
observed in this experiment that some normal skins have
spectral characteristics similar to those of tumors, to a certain
degree. Thus, some normal skins may be spectrally misclas-
sified. Additional information is needed to further classify
tumors correctively.

Many spots falsely identified as tumors can be filtered out by
using spatial/structural information. In this experiment, two
features were examined: the ratio of major axis to minor axis (R)
and the number of pixels in tumor area (A). During the training
phase, tumors were found to satisfy both conditions: R < 2, and
90 < A < 900. Employing this rule using the spatial classifier,
the resultant output is shown in figure 7.

Detection results are summarized in table 1. Images 1
through 6 and image 10 have one carcass in each image,

Figure 4. Spectra of training data.
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Figure 5. Ratio of maximum intensity vs. slope between normal and tumor in training data.

Figure 6. Spectral map Ism.

whereas images 7, 8, and 9 contain two carcasses each. The
rate for detecting actual tumors is 76%, for false positives is
28%, and for actual tumors missed is 24%. However, all
13 chicken carcasses with tumors are identified as having tu-
mor spots. Observation has shown that isolated tumors are
easily detected as long as they are larger than 3 mm in diame-
ter, but detection failure is likely to occur when tumors are
close together. A relatively high rate of missed tumors is also
attributed to one chicken sample (image 10) with multiple
early−stage tumor spots smaller than 3 mm in diameter.

DISCUSSION
In this study, tumors were detected using both spectral and

spatial information in hyperspectral fluorescence images.

Figure 7. Detection result (regions marked by rectangles are classified as
tumors).

Using different types of information or sensors is a well−
known methodology called sensor fusion that pursues ex-
tracting the greatest amount of information possible in the
sensed environment (Waltz and Llinas, 1990; Kim, 1992).
The advantages of sensor fusion come from using the differ-
ent sensors or information synergistically, and typically in-
clude reduced processing time and improved decision
accuracy. The spectral classifier or the spatial classifier alone
cannot detect tumors because, individually, the spectral in-
formation and the spatial information are each incomplete in
describing tumors. But using both pieces of information, the
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Table 1. Detection results.

    Image
No. of Real

Tumors
No. of

Detections
No. of False

Positives
No. of

Missing

      1 3 3 1 0
      2 3 3 0 0
      3 1 1 1 0
      4 3 2 1 1
      5 4 4 1 0
      6 2 1 1 1

      7 (2)[a] 3 3 1 0
      8 (2) 7 5 3 2
      9 (2) 3 3 3 0

    10 12 6 0 6

Total 41 31 (76%) 12 (28%) 10 (24%)
[a] Number of chicken carcasses contained in the image.

classification rule for detecting tumors can be loosely defined
in terms of both the spectral and spatial domains. Conse-
quently, processing time can be reduced due to the less com-
plex classification rules, and detection accuracy can be
improved owing to the complementary natures of spectral
and spatial searches.

Optimal features can be defined as those that maximize
the distance measure between different classes. However, in
reality, “good features” that yield an acceptable classification
rate for the validation data set are sought instead of optimal
features. This is because analytically countless searches
(iterative) are needed before the optimal features are
obtained. For example, from among 65 bands (wavelengths),
any numerical combination of band intensities can represent
a feature. Therefore, finding optimal features, a popular topic
covered in the pattern recognition area, requires more
rigorous effort and is not elaborated upon in this article.
However, spectral−based assessment provides a means to
determine several features. In addition, considering the
results achieved from applying the selected features to the
validation data set, the features based on differences in
fluorescence response between normal skins and tumors
were adequate to avoid the time−consuming (iterative)
process of finding optimal features.

The number of chickens used in this study may raise a
concern in terms of the sample size, in that a total of
13 chickens may seem too small to generalize the proposed
method. However, the algorithm is not applied to whole
chickens but to individual pixels. Considering that each
image is 400 × 460 pixels, classifications are performed at
least 184,000 times for each image. The training samples
(113 pixels) were selected from about 1,840,000 pixels
(10 images), and 110 pixels were used for the validation data
set. There was no overlap between the training and validation
data sets. This is one of the advantages of using imaging
techniques, in that large numbers of sample pixels are
available to evaluate the method.

CONCLUSIONS
This article presents a novel method for detecting skin

tumors on chicken carcasses. It uses both the spectral and
spatial information in hyperspectral fluorescence images in
a synergistic manner. The method first finds a mask that
contains only the region of interest (e.g., chicken carcasses).
A voting method is utilized to determine if a pixel is a

member of either the background or the ROI from each
binary band image. A spectral classifier produces a spectral
map that locates the potential tumorous regions based on the
selected features. Examining the spectral map with criteria
for spatial characteristics of tumors yields final results that
show the location of tumors. The detection rate, false positive
rate, and missing rate were 76%, 28%, and 24%, respectively.
It was found that the detection rate is more sensitive to the
decision rules of the spatial classifier than to those of the
spectral classifier.

There are some issues that need to be considered for future
work to produce better results. The most important issue is to
devise a method of optimal feature selection. The optimal set
of features will find a better decision boundary that can
minimize erroneous classification. Another possibility for
improving the detection rate can be found via the enhance-
ment of spectral map Ism. Compared with chicken carcasses,
the map shows some spots that are irrelevant to tumors, and
some of them are not filtered out in the spatial classifier,
causing a high false positive rate.
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